
388 ANNEXE C. SOLUTIONS DES EXERCICES CORRIGÉS

donc grâce à l’indépendance des Aj : Sinon
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ce qui est le résultat voulu.

Solution 19 1. Soit A un réel quelconque. Comme la série harmonique

diverge, il existe un entier n tel que
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Comme A peut être pris arbitrairement grand, lim
s→1+

ζ(s) ≥ +∞, d’où

le résultat voulu.

2. Notons que pN∗ =
+∞
∪

k=1
{pk}. Bien sûr, la réunion est disjointe, donc

µs(pN∗) =
+∞∑
k=1

µs({kp}) =
+∞∑
k=1

1
ζ(s)

1
(kp)s

= 1
ζ(s)

1
ps

+∞∑
k=1

1
ps

= 1
ζ(s)

1
ps
ζ(s) = 1

ps
.

En prenant p = 1, on a µs(N∗) = 1 et µs est bien une mesure de
probabilité.

3.
+∞
∩

k=1
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k est l’ensemble des entiers naturels non nuls qui ne sont mul-
tiples d’aucun nombre premier, autrement dit qui ne sont divisibles par
aucun nombre premier. Or 1 est le seul entier naturel qui n’ait pas de
facteur premier, d’où l’identité {1} =
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k. Posons Bn =
n
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k.

La suite (Bn)n≥1 est décroissante et son intersection vaut
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k = {1}. Ainsi, d’après le théorème de continuité


