388 ANNEXE C. SOLUTIONS DES EXERCICES CORRIGES
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ce qui est le résultat voulu.
Solution 19 1. Soit A un réel quelconque. Comme la série harmonique

n
diverge, il existe un entier n tel que > % > A.
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Pour tout s > 1 ¢(s) > > %, donc
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Comme A peut étre pris arbitrairement grand, li7m+ ¢(s) > 400, d’on
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le résultat voulu.
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2. Notons que pN* = kgl {pk}. Bien stir, la réunion est disjointe, donc
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En prenant p = 1, on a pus(N*) = 1 et us est bien une mesure de
probabilité.
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3. kﬂl Aj est 'ensemble des entiers naturels non nuls qui ne sont mul-

tiples d’aucun nombre premier, autrement dit qui ne sont divisibles par
aucun nombre premier. Or 1 est le seul entier naturel qui n’ait pas de
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facteur premier, d’ou l'identité {1} = krjl Af. Posons B, = krjl Af.

La suite (By,)n>1 est décroissante et son intersection vaut
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n=
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) B, = kﬂl Af = {1}. Ainsi, d’apres le théoreme de continuité



